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1. INTRODUCTION

It is generally known that the torsional vibration characteristics of rotating components in
reciprocating internal combustion (IC) engines are critical to powertrain noise and
durability concerns. Excessive vibratory response can lead to signi"cant boom noise
response, and in extreme conditions can cause premature structural failure. Therefore, in an
e!ort to improve engine design and prevent undesirable noise and vibration problems,
researchers have devoted much attention to the development of suitable dynamic models to
gain further insight into the vibratory behavior and identify important design parameters
[1}5]. In many cases, the validity and usefulness of the models depend on the knowledge of
the precise mass moment of inertia, sti!ness and damping values. Of these three sets of
parameters, damping is typically the most di$cult one to determine accurately.

Studies of global damping e!ect in reciprocating engines can be traced back to the early
1930s [6]. Later, researchers such as Den Hartog, Draminsky, Ker Wilson and others
[1, 7}9] started to focus more attention on the speci"c origins of damping in the di!erent
engine parts. Most of the damping parameters applied was empirically determined from
experimental observations made on speci"c reciprocating engine systems. Their values are
frequently inaccurate, resulting in signi"cant variation in the simulated vibration response
[10]. In addition, theoretical and hybrid damping models have also been proposed such as
in reference [11], which led to analytical relationships between damping and other more
tangible engine parameters. In spite of recent progress, the accuracy of the damping
representation in reciprocating engines and the knowledge of how it varies with crank angle
are still unsatisfactory. Also, the signi"cance of the individual damping present is poorly
understood. Hence, to aid in achieving a better understanding of the damping
characteristics, the problem of analyzing the torsional damping coe$cients in reciprocating
IC engines by applying the equivalent vibratory energy approach is considered here.

Among the many existing vibration models of rotating engine components, the lumped
parameter representation is one of the simplest and most commonly applied theories. In
spite of the sacri"ce in modelling elegance, the lumped parameter approach can still achieve
su$cient accuracy for many practical applications given a suitable set of parameters [12]. It
is applied here as the basis for the present damping identi"cation analysis. Also, only the
angular degree of freedom (d.o.f.) of the rotating components is considered, as our analysis
primarily concentrates on the prediction of the torsional damping coe$cients. Using an
experimental set-up comprising of a single-cylinder reciprocating engine, the instantaneous
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damping coe$cients corresponding to the "rst two #exible torsional modes are obtained for
di!erent crank angle positions. This is accomplished by assuming a series of discrete
quasi-static con"gurations. The same test set-up is also applied under steady state motoring
condition to determine the time-averaged damping coe$cients for comparison with the
time-varying results.

2. FORMULATION

Consider a vertical single-cylinder reciprocating engine system whose crank is attached
by means of a shaft}#ywheel element to an electric DC motor, as illustrated in Figure 1. The
single-cylinder unit with a cross-head is designed with a relatively long stroke to enhance
the e!ect of hysteretic damping in the piston}cylinder head interface. If only the angular
perturbation response of the structure about its rotational axis is considered, then by using
the classical lumped parameter approach, a discrete n-dimensional model, where n"8 for
the complete system described in Figure 1, can be de"ned explicitly as shown in Figure 2.

The lumped mass moment of inertia I
i
associated with each torsional co-ordinate u

i
of

the model is determined by applying either the circular/annular disk equation for
axisymmetric rotating geometries like the shaft, #ywheel and motor, or the equivalent
kinetic energy expression for more complex structures like the piston, connecting rod and
crank. The former calculation is quite trivial and will not be dealt with in detail here. In the
latter case, given the combined mass of the piston and cross-head to be m

s
, and the top and

bottom parts of connecting rod as m
A

and m
B
, respectively, it can be shown that the kinetic

energy-equivalent lumped mass moment of inertia of the combined single-cylinder bodies in
motion as a function of crank angle a is given as

I
3
(a)"R2(m

S
#m

A
)(sin(a)#cos(a)tan(b))2#m

B
R2#I

R
, (1)

where R is the crank radial distance, I
R

is the crank mass moment of inertia about the
rotational axis, and b is the acute angle bounded by the centerline of the connecting rod and
vertical axis. The above equation is derived by collapsing the kinetic energies of the
individual reciprocating masses into a single energy term. Due to the dependency of
equation (1) on a":X dt where X is the mean angular velocity and t is the time scale, the
calculation produces a time-dependent diagonal inertia-matrix term [I(t)]. The
corresponding sti!ness coe$cient matrix [K] of the shaft elements is derived from the
torsional rigidity equation of a uniform bar, which is inherently time-invariant. Note that in
Figure 1. Vertical single-cylinder engine set-up: 1, measurement gear; 2, attachment disk; 3, cylinder; 4,
measurement gear; 5, #ywheel; 6, #ywheel; 7, universal joint/measurement gear; 8, DC motor.



Figure 2. Lumped parameter model of the proposed single-cylinder engine system.
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this approach, the crank and connecting rod are assumed to be in"nitely rigid, and thus
allowing us to neglect their time-varying compliance e!ect. The equation of torsional
vibration motion in matrix form is

[I(t)]Mu( (t)N#[C(t)]Mu( (t)N#[K]Mu(t)N"M¹(t)N, (2)

where Mu(t)N is the angular displacement vector, M¹(t)N is the externally applied periodic
torque #uctuation vector, and [C(t)] is the time-varying equivalent viscous damping
coe$cient matrix. The non-zero damping terms used to form [C(t)] are depicted in Figure 2.
They include the absolute damping coe$cients c

i
of the cylinder (i"3) and motor (i"8),

and the relative damping coe$cients c
i,i`1

of the two damped drive shaft segments
(i"4, 5). The two absolute damping terms c

i
are the primary emphasis of this

communication, which are to be obtained experimentally. On the other hand, the relative
damping coe$cients are computed using an empirical equation given by c

i,i`1
"

0)04259/nue
i,i`1

, where u is the frequency in rad/s and e
i,i`1

is the #exibility of the shaft
segment between points i and i#1, which was developed from experimental evidences as
reported in reference [12].

Letting M¹(t)N"M0N and considering only the inertia and sti!ness matrices in equation (2)
leads to the classical free-vibration problem. Assuming harmonic motion Mu(t)N"M0Ne+ut

where j"J!1, we obtain the eigenvalue problem given by [[K]![I(t)]u2]M0N"0. For
a speci"c crank angle position, the inertia matrix can be taken to be time-invariant. This
leads to the characteristic equation expressed as det([K]![I(a)]u2)"0 where the
operator det( ) is the determinant of the undamped dynamic sti!ness matrix of equation (2).
The solution essentially provides a set of eight unique eigenvalues or natural frequencies
u

p
"0, u

1
, u

2
, 2, u

n~1
, where the "rst one represents the rigid body motion at zero

frequency, while the others are #exible torsional modes. In this analysis, we focus mainly on
the "rst two non-zero natural modes at u

1
and u

2
. By varying a, we can compute the

time-varying natural modes quasi-statically. The same free-vibration calculation can also be
performed using the average mass moment of inertia II

3
for the cylinder bodies to produce

a constant set of average natural frequency uJ
p
. Note that II

3
can be computed by integrating

I
3
(a) over a complete crank angle cycle and normalizing the result by 2n rad. For the system

described in Figure 1 whose time-invariant parameters and natural modes are given in
Table 1, Figures 3(a, b) show the predicted dimensionless inertia I

3
(a)/II

3
and the natural

frequency u
p
/uJ

p
terms of p"1 and 2, respectively, as a function of a ranging from 0 to 1803.

The results are not shown up to 3603 since the other half of a is symmetrically identical. As
one can see from the plot, the variation in the "rst two natural frequencies is less than 10 per
cent. Its magnitude is also inversely proportional to the normalized inertia as expected. The
corresponding average mode shapes are illustrated in Figure 4. Due to the dependency of
the e!ective inertia on a, the actual modes are not invariant but depict slight spatial
variation as the crank is displaced through a complete cycle. However, the fundamental
nature of the "rst two mode shapes that is of primary concern here is essentially unchanged.



TABLE 1

Average parameters and natural modes of the single-cylinder system

c
i,i`1

(Nms/rad)
I
i

e
i,i`1

Mode-1 Mode-2 c
i

Node i (kg m2) (rad/Nm) MD
i
N
1

MD
i
N
2

Mode-1 Mode-2 (Nms/rad)

1 0)021228 1)2405]10~6 1)00000 1)00000 0 0 0
2 0)004889 3)0863]10~6 0)99906 0)99326 0 0 0
3 0)083485 5)8404]10~6 0)99611 0)97206 0 0 c

3
(a)

4 0)011603 5)2920]10~5 0)97275 0)80708 1)4022 0)5111 0
5 0)164264 1)8673]10~4 0)73921 !0)81838 0)3974 0)1485 0
6 0)164124 5)2399]10~6 !0)91487 0)05857 0 0 0
7 0)010819 8)9304]10~6 !0)93248 0)06990 0 0 0
8 0)085296 * !0)95921 0)08746 0 0 c

8

Figure 3. E!ect of crank angle a on (a) the normalized inertia I
3
(a)/II

3
, and (b) the "rst two non-zero natural

frequencies u
p
/uJ

p
. Here, II

3
"0)083458 kg m2, uJ

1
"30)45 Hz, and uJ

2
"81)68 Hz: r, u

1
; , u

2
.
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The preceding free-vibration result is now used to formulate the unknown damping
coe$cient of the single-cylinder component. First, we note that the overall damping e!ect
may originate from di!erent parts of the single-cylinder unit that include the contact surface
areas between the reciprocating piston/cross-head and "xed cylinder; connecting rod and



Figure 4. First two #exible mode shapes based on average mass moment of inertia terms: - - - , mode 1;*, mode 2.
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cross-head; crank and connecting rod; and main journal bearings and crankshaft.
Contribution from the individual damping is the subject of future study. In the current
analysis, we are interested in obtaining the net e!ect of vibratory energy dissipation
expressed in terms of the equivalent viscous damping coe$cient c

3
(a), even though the

fundamental nature of the damping also includes the hysteresis phenomenon. The
dependence of this single-cylinder damping coe$cient on a is expected due to the change in
the relative velocity amplitudes at the various contact interface areas given a "xed level of
angular #uctuation input at the crank as it takes up di!erent a value. For instance, the total
translation displacement of the piston head is the sum of the mean X and perturbed
x components:

X#x"R[1!cos(a#u
3
)]#Rj[1!cos(2a#2u

3
)]/4, (3)

where j is the ratio of R to the length of the connecting rod. Assuming small perturbation in
which sin(u

3
)+u

3
and cos(u

3
)+1, and taking the time derivative of the above equation

gives the mean and perturbed velocities of the piston head as

XQ "RX[sin(a)#j sin(2a)/2], xR "RuR
3
[sin(a)#j sin(2a)/2], (4a, b)

which clearly demonstrates the dependency on a. Since the degree of vibratory energy
dissipations, especially from hysteresis, is a!ected by the relative velocity term, we expect
the equivalent damping coe$cient term to be a function of a as well. The same e!ect can be
seen in the expression for the swing angle of the connecting rod b and its corresponding
perturbation angle c given by

b#c"(j#j3/8)sin(a#u
3
)!j3sin(3a#3u

3
)/24. (5)

Similarly for small u, the corresponding angular velocity terms can be obtained by taking
the time derivative of equation (5),

bQ "X [(j#j3/8)cos(a)!j3cos(3a)/8], cR"uR [(j#j3/8)cos(a)!j3cos(3a)/8], (6a, b)

which is obviously a function of a as well. However, notice that the piston perturbation
velocity xR is greatest at a"n/2 rad, while cR is largest at a"0 which is exactly 903 apart. The
importance of this observation in revealing the more dominant e!ect will be evident in the
experimental analysis later.

Now consider the forced response problem where M¹(t)N is not completely zero due to an
externally applied harmonic torque excitation ¹

k
(t)"D¹

k
De+ut at a speci"c point k. The

vibratory power injected into the system matches the total power dissipated by the damping
(c

i
, and c

i,i`1
) present. Equating the injected and dissipated power terms at resonance,

where u"u
p

and the response lags the excitation input by n/2 rad, leads to the algebraic
expression

D¹
k
Du

k
"

n
+ c

i
u

p
u2
i
#

n~1
+ c

i,i`1
u

p
(u

i
!u

i`1
)2 (7)
i i
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for each natural mode of the system. Since the angular displacement response can be
expressed as u

i
"u

1
D

i
, where MD

i
N
p

is the eigenvector corresponding to u
p

in which D
1

is
normalized to unity, the above equation can be re-written as

D¹
k
DD

k
"u

p
u
1C

n
+
i

c
i
D2
i
#

n~1
+
i

c
i,i`1

(D
i
!D

i`1
)2D , (8)

where u
1

is the measured angular displacement response of the disk at point 1. This
formulation essentially forms the basis for computing the equivalent damping e!ect of the
single-cylinder unit, which can be applied for both quasi-static and running conditions. To
apply equation (8), D¹

k
D, MD

i
N and other non-cylinder related damping terms must be known

"rst. The amplitude of the harmonic torque excitation D¹
k
D can be either sensed

experimentally or computed theoretically, while MD
i
N is obtained from the eigenvalue

analysis of the free-vibration problem. Recall that c
3
, c

8
, c

4,5
and c

5,6
are the only non-zero

damping coe$cients as described earlier. However, of these four terms, only c
3

and c
8

are
the unknowns and will be examined experimentally next.

3. EXPERIMENTAL RESULTS

An experimental set-up of the single-cylinder engine system shown in Figure 1 is
developed for this study. The design speci"cations of the reciprocating cylinder component
used is given by: bore"72 mm, stroke"150 mm, R"75 mm and j"0)315. The set-up is
used for both quasi-static and running experiments. The former method allows us to
determine the cylinder damping coe$cients at discrete intervals of crank angle positions,
while the latter one produces the average damping term. In both cases, the torsional
vibration signals for numerous disk positions are acquired. In the quasi-static experiment,
three pairs of linear accelerometers are located at 1803 separation, and identical radial
distance points from the rotation center are utilized. For the running test, three
non-contacting magnetic pickup transducer are used instead. The measured time response
is processed using the fast fourier transform technique to compute the response spectra.
Note that only the free-end response point is used directly in the calculation, while the other
two measured response points are used mainly for a partial validation check of the mode
shape vector MD

i
N. The overall set-up is shown in Figure 5.

To determine the damping coe$cient of the DC motor "rst, the cylinder component is
physically disconnected from the upstream shaft}#ywheel}motor subsystem whose
parameters are given in Table 2. By o!setting the angular alignment of the universal joint
between the motor and drive shaft such that the driving and driven axes are not collinear,
we can produce a periodic torsional excitation about the mean motor speed. The model
parameters given in Table 2 are considered time-invariant due to the axisymmetric nature
of the remaining subsystem. Accordingly, equation (2) can be reduced to a 5-d.o.f. lumped
parameter system with c

8
as its only unknown by eliminating the terms associated with the

truncated co-ordinates u
1
, u

2
and u

3
. Solving the corresponding eigenvalue problem gives

the "rst #exible natural mode at uN
1
"35 Hz. The corresponding mode shape in which D

4
is

normalized to unity is also listed in Table 2. Using u
i
"u

4
D

i
, equation (7) reduces to

D¹
7
DD

7
"X

1
u

4
[c

8
D2
8
#c

4,5
(D

4
!D

5
)2#c

5,6
(D

5
!D

6
)2], (9)

where ¹
7
"4I

7
X2

1
[1!cos2(h)]/[1#cos2(h)] sin(2Xt), which can be used to solve c

8
. Here,

h is the angular misalignment of the universal joint. Note that in order to obtain an accurate
value for u

4
at uN

1
, the running test is performed by sweeping the speed from approximately



Figure 5. Experimental set-up to perform torsional vibration measurements of quasi-static and running
conditions: , accelerometer (quasi-static test); , magnetic pickup transducer (running test); , nodal point for
mode 1 (quasi-static test); , nodal point mode 2 (quasi-static test).

TABLE 2

Average parameters and natural modes of the shaft}-ywheel}motor subsystem

Node, i I
i
(kg m2) e

i,i`1
(rad/Nm) MD

k
N c

i,i`1
(Nms/rad) c

i
(Nms/rad)

4 0)009926 5)2920]10~5 1)00000 1)1366 0
5 0)164264 1)8673]10~4 0)97331 0)3221 0
6 0)164124 5)2399]10~6 !0)63758 0 0
7 0)010819 8)9304]10~6 !0)65493 0 0
8 0)085296 !0)68128 c

8
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850}1300 revolution per minute (r.p.m.), which e!ectively provides a torque #uctuation
frequency that is twice the driving speed, to seek out the speci"c resonance point. Given the
numerical data in Table 2, the motor damping coe$cient c

8
is found to be 1)6136 Nms/rad.

We are now in the position to set-up the experiment to determine c
3
. The quasi-static case

is considered here. Using the complete installation in which the cylinder is re-attached back
to the upstream subsystem, the nodal locations of the "rst or second total system modes
between points 5 and 6 are clamped-down. This is done to set-up arti"cial boundary
conditions that produce natural models (of the downstream subsystem containing the
cylinder) that are identical to the total system natural modes. In addition, the "xed point
eliminates rigid body motion and eases testing. Table 3 summarizes the parameters for this
con"guration. Since the motor is isolated from the cylinder}shaft subsystem by the "xed
point, an arti"cial harmonic torque excitation is applied to u

5
using a pair of out-of-phase,

non-contacting magnetic exciters. The exciter is used to perform frequency sweep between
20}55 and 50}100 Hz to seek out the "rst two resonances. Equation (8) then simpli"es to
become

D¹
5
DD

5
"u

p
u
1
[c

3
D2

3
#c

4,5
(D

4
!D

5
)2#cL

5,6
D2
5
], (10)

where cL
5,6

is the damping coe$cient of the shortened shaft as the result of the "xed
boundary point. With only one unknown, the above equation can be used to solve c

3
. This



TABLE 3

Parameters and natural modes of the clamped single-cylinder system

c
i,i`1

(Nms/rad)
I
i

e
i,i`1

Mode-1 Mode-2 c
i

Node i (kg m2) (rad/Nm) MD
i
N
1

MD
i
N
2

Mode-1 Mode-2 (Nms/rad)

1 0)021228 1)2045]10~6 1)00000 1)00000 0 0 0
2 0)004889 3)0863]10~6 0)99906 0)99326 0 0 0
3 I

3
(a) 5)8404]10~6 0)99611 0)97206 0 0 c

3
(a)

4 0)011603 5)2920]10~5 0)97275 0)80708 1)3390 0)4992 0
5 0)164264 e

5,6
0)73921 !0)81838 0)8491 0)1516 0

Note: e
5>6

"8)3451]10~5 (mode-1) and 1)742]10~4 (mode-2); and I
3
(a) is given in Figure 3)

Figure 6. E!ect of crank angle position relative to the vertical axis ont he e!ective single-cylinder damping:
(a) absolute damping coe$cient c

3
;*r2, mode 1; , mode 2; (b) dimensionless damping parameter c

3
/(I

3
u

p
);

*r*, mode 1; * *, mode 2.
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calculation along with the required measurement is performed for di!erent crank positions
at each discrete interval of 153. The results of c

3
and the corresponding dimensionless

damping term c
3
/(I

3
u

p
) depict a distinct U-shape dependency on a ranging from 0 to 180 as

shown in Figure 6. This trend indicates the largest damping e!ect at the a"0 and
n positions. Since we can infer from equations (4b) and (6b) that the damping from the
reciprocating parts is smallest at a"0 and maximum at a"n/2 rad, while the trend of the
damping from the crank}connecting rod interface areas are the opposite, we can conclude
that the damping from the crank}connecting rod interface areas must be larger. This is also



Figure 7. Frequency response spectra of points 1 and 3 for the case of a"0 and n/2 rad:**, a"903, point 1;
}} } , a"903, point 3; - - -, a"03, point 1; } . .}, a"03, point 3.
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seen in Figure 7 illustrating the frequency response functions of u
1

and u
3

because the
resonance peak for the case of a"n/2 rad is narrower and higher (which is a symptom of
lower damping) than that of the a"0 case. Also, the natural frequency of the former case is
slightly lower as previously shown in Figure 3. Detailed analysis of the breakdown of
speci"c damping coe$cients from the various energy dissipation causes in the cylinder is
beyond the scope of this communication and is left for future research.

To further verify the time-varying damping coe$cient results, the complete system is
operated in a speed swap mode from about 280}1400 r.p.m. using the motor as the drive to
seek out the "rst two non-zero frequency resonances. Unlike earlier running test to
determine c

8
, the universal joint misalignment angle h in this case is set to 0. Hence, the

torsional excitation is assumed to come from the reciprocating parts of the cylinder only.
Therefore, one can show that the harmonic torque at the cylinder point is classically [1]
given by

¹
3
"(m

s
#m

A
)(RX)2C

j
4

sin(Xt)!
1

2
sin(2Xt)!

3j
4

sin(3Xt)!
j2
4

sin(4Xt)D. (11)

Applying equation (8) once more to modes 1 and 2, and using average inertia value for the
cylinder shown in Table 1 gives

D¹
3
DD

3
"u

p
u

1
[cJ

3
D2
3
#c

8
D2
8
#c

4,5
(D

4
!D

5
)2#c

5,6
(D

5
!D

6
)2], (12)

which can be used to compute the absolute damping coe$cients of the single-cylinder for
the u

1
and u

2
natural frequencies. This calculation resulted in c

3
"0)9407 and

1)3986 Nms/rad for the "rst and second #exible modes respectively. These running test
results are in fact quite close to the time-average damping of 0)9673 Nms/rad (mode 1) and
1)3162 Nms/rad (mode 2) that have been obtained by integrating the time-varying c

3
(a) over

a full crank cycle and dividing the outcome by 2n rad.

4. CONCLUDING REMARKS

In this communication, we have discussed a relatively straightforward quasi-static
experiment to determine the damping coe$cients of a single cylinder in terms of the
crank angle position. The approach relies on the vibratory energy balance formulation,
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and utilizes the measured torsional response of limited points in the set-up. Also, a
corresponding motorized experiment can be used to obtain the average damping observed
in a running condition, which matches well with the time-average damping data derived
from numerically averaging the time-varying damping over one full crank cycle. The
resulting damping coe$cients can be used to perform linear or time-varying forced response
analysis of reciprocating engine systems with one or more cylinders. Our analysis also
reveals an interesting result showing the damping e!ect in the crank-connecting rod
interface areas to be more dominant than the net damping level observed in the
reciprocating parts. Although the proposed method is demonstrated on a reciprocating
single-cylinder engine set-up, its basic procedure is applicable to other damping elements in
the powertrain system.
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